CHAPTER 5: Direct Manipulation and Virtual Environments

screen

Examples of Direct-Manipulation Systems: Command line vs. display editors and word processors

WYSIWYG: what you see is what you get.

The advances of WYSIWYG word processors:

- ✓ Display a full page of text
- \checkmark Show & control cursor action
- \checkmark Display of the document
- \checkmark Display of the results of an action immediately

5. Typing commands with the keyboard may be faster

Discussion of Direct Manipulation: Problems with direct manipulation

- 1. High-level flowcharts and database-schema can become confusing 3. Designs may force valuable information off of the
- 2. The visual representation may be misleading
- 4. Users must learn the graphical representations

Interface-Building Tools .Visual Thinking and Icons

- * The visual nature of computers can challenge the first generation of hackers
- * An icon is an image, picture, or symbol representing a concept
- * Icon-specific guidelines
- 1. Represent the object or action in a familiar manner
- 3. Ensure a selected icon is visible from unselected icons
- 5. Add detailed information
- 7. Explore combinations of icons to create new objects or actions

3D Interfaces: Features for effective **3D**

- ✓ Use occlusion, shadows, perspective, and other 3D techniques
- ✓ Avoid unnecessary visual clutter
- ✓ Minimize the number of navigation steps
- \checkmark Enable users to construct visual groups to support spatial recall.
- ✓ Organize groups of items in aligned structures to allow rapid visual search.

Teleoperation

Two "parents": direct manipulation in personal computers and process control in complex environments

- 1. Physical operation is remote
- 2. Complicating factors in the architecture of remote environments:

✓ Incomplete feedback	✓ Unanticipated interferences
✓ Time delays	✓ Feedback from multiple sources
1.Transmission delays 2.Operation delays	

- 2. Limit the number of different icons
- 4. Make icons stand out from the background
- 6. Design the movement animation
- 8. Consider three-dimensional icons
 - \checkmark Keep text readable
 - ✓ Simplify user movement
 - \checkmark Prevent errors.
 - ✓ Simplify object movement

Virtual and Augmented Reality: Virtual reality breaks the physical limitations of space and allow users to act as though they were somewhere else

- ✤ Augmented reality shows the real world with an overlay of additional overlay
- Situational awareness shows information about the real world that surrounds you by tracking your
- Movements in a computer model
- ✤ Augmented reality is an important variant
- Successful virtual environments depend on the smooth integration of:
- 2. Head position sensing 1. Visual Display
- 3. Hand-position sensing 4. Force feedback 6. Cooperative and competitive virtual reality 5. Sound input and output

WEEK 7-CHAPTER 7: Command and Natural Languages

The Basic Goals of Language Design

- **1.** Precision
- **2.** Speed in learning
- **3.** Ease in writing and reading
- 6. Ease of retention over time

- 4. Compactness
- **5.** Simplicity to reduce errors
- **Higher-Level Goals of Language Design**
 - Compatibility Flexibility
 - Expressiveness to encourage creativity
- Visual appeal Close correspondence between reality and the • notation

Functionality to Support User's Tasks. Users do wide range of work:

- text editing
- ✤ airline or hotel reservations
- ✤ Gaming

Designers should

- ✓ determine functionality of the system
- \checkmark create a list of task actions and objects
- ✓ evaluate destructive
- \checkmark allow shortcuts for expert users

Six Potential Abbreviation Strategies

- **1.** Simple truncation
- 3. First and last letter
- 5. First letter of each word in a phrase: Use with a hierarchical

Natural Language in Computing

- Natural-language interaction
- ✤ Natural-language text generation
- Natural-language queries and question answering

- electronic mail inventory
- financial management
 - manufacturing process control
- ✓ represent low-level interface syntax
- ✓ create a table of user communities and tasks
- ✓ identify error conditions and prepare error messages
- ✓ determine hierarchy of importance of user communities
 - 2. Vowel drop with simple truncation
 - 4. Phonics: Focus attention on the sound.
 - 6. Standard abbreviations from other contexts: Use familiar abbreviations.
 - Text-database searching
 - ***** Adventure games and instructional systems

WEEK 9 CHAPTER 6: Menu Selection, Form Fill-In, and Dialog Boxes

The primary goal for menu, form fill-in, and dialog-box designers is to create a sensible, comprehensible, memorable, and convenient organization relevant to the user's task.

Single Menus

- Binary Menus (Mnemonic letters Radio Buttons Button Choice)
- Multiple-item Menus
- Multiple-selection menus or check boxes
- Pull-down, pop-up, and toolbar menus

Pull-down menus: Always available to the user by making selections on a top menu bar EX(Key board shortcuts - Toolbars, iconic menus, and palletes). Appear on a display in response to a check or tap with a pointing device.

- Menus for long list (Scrolling menus, combo boxes, and fisheye menus Sliders and alpha sliders Two-dimensional menus)
- Embedded menus and hotlinks. Allow users reading about people, place.

Combination of multiple menus

- Menu Maps
- Linear menu sequences and simultaneous menus
- Tree-structured menus
- Acyclic and Cyclic Networks

Linear: Guide the user through complex decision-making process (Ex: Wizards) Simultaneous: Present multiple active menus at the same time and allows users to enter choices in any order.

Menu Maps: Menu maps can help users stay oriented in a large menu tree &Effective for providing overviews to minimize user disorientation.

Content Organization

- 1. Task-related grouping in tree organization
- 2. Item Presentation Sequence
- 3. Menu layout
- **Titles:** For single menus, use a simple descriptive title. For tree-structured menus, use the exact same words in the higher-level menu items as in the titles for the next lower-level menu)
- Techniques
 Graphic layout and design
- Establish guidelines for consistency of at least these menu components:
- TitlesItem placementInstructions
- Status reportsError messages

Fast Movement through Menus (Keyboard shortcuts)

- Data Entry with Menus: Form Fill-in, Dialog Boxes, and Alternatives
- Form Fill-in
 Format-specific field
 Novel design combining menus and direct manipulation
- Dialog Boxes
- a) Internal layout (Meaningful title-Standard buttons-Top-left to bottom-right sequencing)
- **b**) External Relationship (Size small Easy to make disappear Clear how to complete/cancel)

Week10 CHAPTER 10: Quality of Service

Models of response-time impacts

- Response time: The number of seconds it takes from the moment users initiate an activity until the computer presents results on the display.
- User think time: The number of seconds the user thinks before entering the next action.
- Designers of response times and display rates in HCI must consider:
- cost
- task complexity
- user expectations error handling procedures

- error rates
- speed of task performance complex interaction of technical feasibility
- Overall majority of users prefer rapid interactions
- Lengthy response times (15 seconds) are detrimental to productivity
- Rapid response times (1 second or less) are preferable, but can increase errors for complex tasks
 - Display Rate
 - Reading textual information from a screen
 - Cognitive human performance
 - Limitations of short-term and working memory
- Any cognitive model must emerge from an understanding of human problem-solving abilities
- Magic number seven plus or minus two
 - The average person can rapidly recognize seven chunks of information at a time
 - This information can be held for 15 to 30 seconds in short-term memory
 - Size of the chunks depends on the person's familiarity with the material
- Short-term memory and working memory are used in conjunction for .
 - processing information and problem solving
 - Short-term memory processes perceptual input
 - Working memory generates and implements solutions
- People learn to cope with complex problems by developing higher-level concepts using several • lower-level concepts brought together into a single chunk
- Short term and working memory are highly volatile •
 - Disruptions cause loss of memory
 - Delays require that memory be refreshed
 - Source of errors
 - Conditions for optimum problem solving
 - Longer response time causes uneasiness in the user because the penalty for error increases.
 - Shorter response time may cause the user to fail to comprehend the presented materials.
 - Progress indicators shorten perceived elapsed time and heighten.

Summary

- Users pick up the pace of the system to work more quickly with shorter response time

- Higher throughput of work demands more attention must be paid to minimizing the cost of delay of error recovery

Week11 CHAPTER 11: Balancing Function and Fashion

Error messages

- Phrasing of error messages or diagnostic warnings is critical, especially when dealing with novices
- Avoid
 - $-\operatorname{imperious}$ tone that condemns user
 - messages that are too generic (e.g. WHAT? or SYNTAX ERROR)
 - messages that are too obscure (e.g. FAC RJCT 004004400400)

• Specificity	• User-centered phrasing	Appropriate physical format
	C	

Development of effective messages
 Constructive guidance and positive tone

Display design

- Effective display designs must provide all the necessary data in the proper sequence to carry out the task:
- Mullet and Sano's categories of design principles:
 - Elegance and Simplicity (unity, refinement and fitness)
 - Scale, Contrast, and Proportion (clarity, harmony, activity, and restraint)
 - Organization and Visual Structure (grouping, hierarchy, relationship, and balance)
 - Module and Program (focus, flexibility, and consistent application)
 - Image and Representation (immediacy, generality, cohesiveness, and characterization)
 - Style (distinctiveness, integrity, comprehensiveness, and appropriateness)

• Field layout

- Blank spaces and separate lines can distinguish fields.
- Names in chronological order, alignment of dates, familiar date separators.
- Labels are helpful for all but frequent users.
- Distinguish labels from data with case, boldfacing, etc.
- If boxes are available they can be used to make a more appealing display, but they consume screen space.
- Specify the date format for international audiences
- Other coding categories background shading, color, and graphic icons
- Empirical results
 - structured form superior to narrative form
 - improving data labels, clustering related information, using appropriate indentation and

underlining, aligning numeric values, and eliminating extraneous characters improves performance

- performance times improve with fewer, denser displays for expert users
- screen contents should contain only task-relevant information
- consistent location, structure, and terminology across displays important
- sequences of displays should be similar throughout the system for similar tasks
- sequences of displays should be similar throughout the system for similar tasks
- **Display-complexity metrics**

Although knowledge of the users' tasks and abilities is key to designing effective screen displays, objective and automatable metrics of screen complexity are attractive aids

- Tullis (1997) developed four task-independent metrics for alphanumeric displays:
- ✓ Overall Density ✓ Local Density ✓ Grouping ✓ Layout Complexity

<u>Web page design</u>

Top Ten Mistakes

- 1. Burying information too deep in a web site
- 2. Overloading pages with too much material
- 3. Providing awkward or confusing navigation
- Putting information in unexpected places on the page
- Not making links obvious and clear
- 6. Presenting information in bad tables
- 7. Making text so small that many users cannot read it
- 8. Using color combinations for text that many users cannot read
- 9. Using bad forms
- 10. Hiding (or not providing) features that could help users

Window design

1) Image browsing

The design of image browsers should be governed by the users' tasks, which can be classified as follows:

- Image generation
- Open-ended exploration
- Diagnostics

- Navigation
- Monitoring
- 2) Personal role management

A role centered design emphasizes he users' takes rather than the applications and documents

- Vision statement
- Set of people

• Task hierarchy

- Set of documents
- Schedule

• Task merarchy

Color: Color can

• Soothe or strike the eye	Add accents to an uninteresting display
• Draw attention to warnings	Emphasize the logical organization of information
• Facilitate subtle discriminations in complex displays	• Evoke string emotional reactions of joy, excitement, fear, or anger

Guidelines of color

- Use color conservatively
- Color can help in formatting
- Be consistent in color coding
- Design for monochrome first
- Limit the number and amount of colors
- Be alert to problems with color pairings
- Use color changes to indicate status changes

- Use color in graphic displays for greater information density
- Color coding should support the task
- Consider the needs of color-deficient users
- Color coding should appear with minimal user effort
- Color coding should be under user control
- Recognize the power of color to speed or slow tasks
- Be alert to common expectations about color codes

Week12CHAPTER 8: Interaction Devices

* Keyboard Layouts

- QWERTY layout: put frequently used letter pairs far apart, thereby increasing finger travel distances
- Dvorak layout: reduces finger travel it takes about 1 week of regular typing to make the switch

• **ABCDE style:** 26 letters of the alphabet laid out in alphabetical order nontypists will find it easier to locate the keys

Keys

- 1/2 inch square keys	- matte finish to reduce glare finger slippage	
- 1/4 inch spacing between keys	- tactile and audible feedback important	
- slight concave surface	- 40- to 125-gram force to activate	
- 3 to 5 millimeters displacement	- key labels should be large, meaningful, permanent	
- certain keys should be larger (e.g. ENTER, SHIFT, CTRL)		
- some keys require state indicator, such as lowered position or light indicator (e.g. CAPS LOCK)		

- some "home" keys may have additional features, such as deeper cavity or small raised dot, to help user locate their fingers properly (caution - no standard for this)

• Function keys

- Users must either remember each key's function, identify them from the screen's display, or use a template over the keys in order to identify them properly
- can reduce number of keystrokes and errors
- meaning of each key can change with each application
- placement on keyboard can affect efficient use
- special-purpose displays often embed function keys in monitor bezel
- lights next to keys used to indicate availability of the function, or on/off status
- Typically simply labeled (F1, F2, etc) also have meaningful labels, such as CUT, COPY, etc.
- frequent movement between keyboard home position and mouse or function keys can be disruptive to use
- alternative is to use closer keys (e.g. ALT or CTRL) and one letter to indicate special function

Cursor movement keys

- up, down, left, right
- some keyboards also provide diagonals
- best layout is natural positions

- inverted-T positioning allows users to place their middle three fingers in a way that reduces hand and finger movement

- cross arrangement better for novices than linear or box
- typically include typamatic (auto-repeat) feature
- important for form-fillin and direct manipulation
- other movements may be performed with other keys, such as TAB, ENTER, HOME, etc.

Keyboard and keypads for small devices

• Pens and touchscreens	Cloth keyboards		Soft keys	
Virtual keyboards		• Wireless or f	oldable keyboards	

Pointing Devices

Direct control devices (easy to learn and use, but hand may obscure display)

- Lightpen
- Touchscreen
- Stylus

Indirect control devices (take time to learn)

- Mouse
- Trackball
- Joystick
- Trackpoint
- Touchpad
- Graphics tablet

Non-standard devices and strategies (for special purposes)

- Multitouch tablets and displays
- Bimanual input
- Eye-trackers
- Sensors
- 3D trackers
- DataGloves
- Boom Chameleon
- Haptic feedback
- Foot controls
- Tangible user interfaces
- Digital paper

Criteria for success

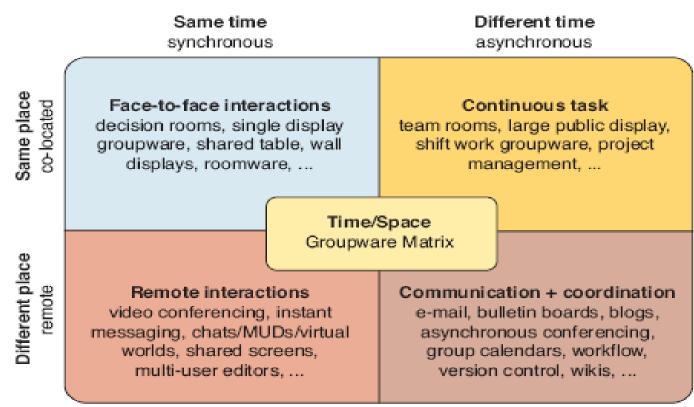
- Speed and accuracy
- Efficacy for task
- Learning time
- Cost and reliability
- Size and weight

Novel devices

Foot controls	Handheld devices	Data Glove	Smart pens
Eye-tracking	Game controllers	Table top touch screens	Haptic feedback
Bimanual input	Multiple-degrees-of-freedom devices	Ubiquitous computing and tangible user interfaces	

Display technology

Monochrome displays	Plasma panel
RGB shadow-mask displays	Light-emitting diodes (LEDs)
Raster-scan cathode-ray tube (CRT)	Electronic ink
Liquid-crystal displays (LCDs)	Braille displays


WEEK 14 CHAPTER 9: Collaboration and Social Media Participation

Collaboration

Goals of Cooperation

1. Conference	2. Meeting and decision support	3. Electronic commerce
4. Telepresence	5. Structured work processes	6. Lecture or demo
7. Collaboratories	8. Tele-democracy	9. Focused partnerships
10. On-line communities		

Time/space matrix model of group-supported work

